
 

 

This is an out-of-bounds access, positioned to the source location, and the exception is 

triggered in the update_recv_order function, which handles the order segment data in the rdp 

message.

 

 

 

View the code for Stream_Read_UINT8： 

 



 

 

S is a wStream type structure pointer： 

 

There are three key fields, buffer, pointer, and length. 

Buffer indicates a buffer pointing to the stored message 

Pointer points to the location of the current read 

The length of the message that The Lengthbuffer points to 

The Stream_Read_UINT8 function reads 1 byte through the pointer pointer. So we can know 

that it should be s->pointer out of bounds that causes Stream_Read_UINT8 cross-border 

access 

 

But at the beginning of the update_recv_order function, Stream_GetRemainingLength were 

used to ensure that subsequent reads do not cross the line, why is there an out-of-bounds 

access? 

Check out the code for Stream_GetRemainingLength:： 

 

Here is an integer overflow. The return value of the function is size_t is an unsigned integer, 

and when the value of (s-pointer - s-buffer) is greater than s-length, a negative value is 

returned, converted to an unsigned integer, and becomes a larger value, resulting in the 

explicit pointer having crossed the line, but Stream_GetRemainingLength can't check out the 



situation. 

 

So how did pointer cross the line? 

View the parent function of update_recv_order update_recv_orders: 

 

As you can see update_recv_order is called repeatedly to handle multiple order segments. 

Could it be that some order segment data caused subsequent pointers to cross the line? 

 

See the other functions called in the update_recv_order function： 

 

 

View update_recv_secondary_order: 



 

Here is a key variable, next. You can see that 2 bytes have been read from the buffer as 

orderLength, then added to the current position s->pointer, plus 7, and then set next to the 

new pointer through Stream_SetPointer, pointing to the current position. 

When orderLength is oversized, it is bound to result in a situation where (s-pointer-s-buffer) 

is larger than s-length. Subsequent integer overflows in the Stream_GetRemainingLength 

lead to a failure of the inspection, which in turn leads to subsequent cross-border access. 


