FreeRDP
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Modules Pages
md4.c
1/*
2 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
3 * MD4 Message-Digest Algorithm (RFC 1320).
4 *
5 * Homepage:
6 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md4
7 *
8 * Author:
9 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
10 *
11 * This software was written by Alexander Peslyak in 2001. No copyright is
12 * claimed, and the software is hereby placed in the public domain.
13 * In case this attempt to disclaim copyright and place the software in the
14 * public domain is deemed null and void, then the software is
15 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
16 * general public under the following terms:
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted.
20 *
21 * There's ABSOLUTELY NO WARRANTY, express or implied.
22 *
23 * (This is a heavily cut-down "BSD license".)
24 *
25 * This differs from Colin Plumb's older public domain implementation in that
26 * no exactly 32-bit integer data type is required (any 32-bit or wider
27 * unsigned integer data type will do), there's no compile-time endianness
28 * configuration, and the function prototypes match OpenSSL's. No code from
29 * Colin Plumb's implementation has been reused; this comment merely compares
30 * the properties of the two independent implementations.
31 *
32 * The primary goals of this implementation are portability and ease of use.
33 * It is meant to be fast, but not as fast as possible. Some known
34 * optimizations are not included to reduce source code size and avoid
35 * compile-time configuration.
36 */
37
38#include <string.h>
39
40#include "md4.h"
41
42/*
43 * The basic MD4 functions.
44 *
45 * F and G are optimized compared to their RFC 1320 definitions, with the
46 * optimization for F borrowed from Colin Plumb's MD5 implementation.
47 */
48static inline winpr_MD4_u32plus F(winpr_MD4_u32plus x, winpr_MD4_u32plus y, winpr_MD4_u32plus z)
49{
50 return ((z) ^ ((x) & ((y) ^ (z))));
51}
52static inline winpr_MD4_u32plus G(winpr_MD4_u32plus x, winpr_MD4_u32plus y, winpr_MD4_u32plus z)
53{
54 return (((x) & ((y) | (z))) | ((y) & (z)));
55}
56static inline winpr_MD4_u32plus H(winpr_MD4_u32plus x, winpr_MD4_u32plus y, winpr_MD4_u32plus z)
57{
58 return ((x) ^ (y) ^ (z));
59}
60
61/*
62 * The MD4 transformation for all three rounds.
63 */
64#define STEP(f, a, b, c, d, x, s) \
65 (a) += f((b), (c), (d)) + (x); \
66 (a) = (((a) << (s)) | (((a)&0xffffffff) >> (32 - (s))));
67
68/*
69 * SET reads 4 input bytes in little-endian byte order and stores them in a
70 * properly aligned word in host byte order.
71 *
72 * The check for little-endian architectures that tolerate unaligned memory
73 * accesses is just an optimization. Nothing will break if it fails to detect
74 * a suitable architecture.
75 *
76 * Unfortunately, this optimization may be a C strict aliasing rules violation
77 * if the caller's data buffer has effective type that cannot be aliased by
78 * winpr_MD4_u32plus. In practice, this problem may occur if these MD4 routines are
79 * inlined into a calling function, or with future and dangerously advanced
80 * link-time optimizations. For the time being, keeping these MD4 routines in
81 * their own translation unit avoids the problem.
82 */
83#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
84#define SET(n) (*(const winpr_MD4_u32plus*)&ptr[4ULL * (n)])
85#define GET(n) SET(n)
86#else
87#define SET(n) \
88 (ctx->block[(n)] = (winpr_MD4_u32plus)ptr[4ULL * (n)] | \
89 ((winpr_MD4_u32plus)ptr[4ULL * (n) + 1] << 8) | \
90 ((winpr_MD4_u32plus)ptr[4ULL * (n) + 2] << 16) | \
91 ((winpr_MD4_u32plus)ptr[4ULL * (n) + 3] << 24))
92#define GET(n) (ctx->block[(n)])
93#endif
94
95/*
96 * This processes one or more 64-byte data blocks, but does NOT update the bit
97 * counters. There are no alignment requirements.
98 */
99static const void* body(WINPR_MD4_CTX* ctx, const void* data, unsigned long size)
100{
101 const winpr_MD4_u32plus ac1 = 0x5a827999;
102 const winpr_MD4_u32plus ac2 = 0x6ed9eba1;
103
104 const unsigned char* ptr = (const unsigned char*)data;
105
106 winpr_MD4_u32plus a = ctx->a;
107 winpr_MD4_u32plus b = ctx->b;
108 winpr_MD4_u32plus c = ctx->c;
109 winpr_MD4_u32plus d = ctx->d;
110
111 do
112 {
113 const winpr_MD4_u32plus saved_a = a;
114 const winpr_MD4_u32plus saved_b = b;
115 const winpr_MD4_u32plus saved_c = c;
116 const winpr_MD4_u32plus saved_d = d;
117
118 /* Round 1 */
119 STEP(F, a, b, c, d, SET(0), 3)
120 STEP(F, d, a, b, c, SET(1), 7)
121 STEP(F, c, d, a, b, SET(2), 11)
122 STEP(F, b, c, d, a, SET(3), 19)
123 STEP(F, a, b, c, d, SET(4), 3)
124 STEP(F, d, a, b, c, SET(5), 7)
125 STEP(F, c, d, a, b, SET(6), 11)
126 STEP(F, b, c, d, a, SET(7), 19)
127 STEP(F, a, b, c, d, SET(8), 3)
128 STEP(F, d, a, b, c, SET(9), 7)
129 STEP(F, c, d, a, b, SET(10), 11)
130 STEP(F, b, c, d, a, SET(11), 19)
131 STEP(F, a, b, c, d, SET(12), 3)
132 STEP(F, d, a, b, c, SET(13), 7)
133 STEP(F, c, d, a, b, SET(14), 11)
134 STEP(F, b, c, d, a, SET(15), 19)
135
136 /* Round 2 */
137 STEP(G, a, b, c, d, GET(0) + ac1, 3)
138 STEP(G, d, a, b, c, GET(4) + ac1, 5)
139 STEP(G, c, d, a, b, GET(8) + ac1, 9)
140 STEP(G, b, c, d, a, GET(12) + ac1, 13)
141 STEP(G, a, b, c, d, GET(1) + ac1, 3)
142 STEP(G, d, a, b, c, GET(5) + ac1, 5)
143 STEP(G, c, d, a, b, GET(9) + ac1, 9)
144 STEP(G, b, c, d, a, GET(13) + ac1, 13)
145 STEP(G, a, b, c, d, GET(2) + ac1, 3)
146 STEP(G, d, a, b, c, GET(6) + ac1, 5)
147 STEP(G, c, d, a, b, GET(10) + ac1, 9)
148 STEP(G, b, c, d, a, GET(14) + ac1, 13)
149 STEP(G, a, b, c, d, GET(3) + ac1, 3)
150 STEP(G, d, a, b, c, GET(7) + ac1, 5)
151 STEP(G, c, d, a, b, GET(11) + ac1, 9)
152 STEP(G, b, c, d, a, GET(15) + ac1, 13)
153
154 /* Round 3 */
155 STEP(H, a, b, c, d, GET(0) + ac2, 3)
156 STEP(H, d, a, b, c, GET(8) + ac2, 9)
157 STEP(H, c, d, a, b, GET(4) + ac2, 11)
158 STEP(H, b, c, d, a, GET(12) + ac2, 15)
159 STEP(H, a, b, c, d, GET(2) + ac2, 3)
160 STEP(H, d, a, b, c, GET(10) + ac2, 9)
161 STEP(H, c, d, a, b, GET(6) + ac2, 11)
162 STEP(H, b, c, d, a, GET(14) + ac2, 15)
163 STEP(H, a, b, c, d, GET(1) + ac2, 3)
164 STEP(H, d, a, b, c, GET(9) + ac2, 9)
165 STEP(H, c, d, a, b, GET(5) + ac2, 11)
166 STEP(H, b, c, d, a, GET(13) + ac2, 15)
167 STEP(H, a, b, c, d, GET(3) + ac2, 3)
168 STEP(H, d, a, b, c, GET(11) + ac2, 9)
169 STEP(H, c, d, a, b, GET(7) + ac2, 11)
170 STEP(H, b, c, d, a, GET(15) + ac2, 15)
171
172 a += saved_a;
173 b += saved_b;
174 c += saved_c;
175 d += saved_d;
176
177 ptr += 64;
178 } while (size -= 64);
179
180 ctx->a = a;
181 ctx->b = b;
182 ctx->c = c;
183 ctx->d = d;
184
185 return ptr;
186}
187
188void winpr_MD4_Init(WINPR_MD4_CTX* ctx)
189{
190 ctx->a = 0x67452301;
191 ctx->b = 0xefcdab89;
192 ctx->c = 0x98badcfe;
193 ctx->d = 0x10325476;
194
195 ctx->lo = 0;
196 ctx->hi = 0;
197}
198
199void winpr_MD4_Update(WINPR_MD4_CTX* ctx, const void* data, unsigned long size)
200{
201 winpr_MD4_u32plus saved_lo = ctx->lo;
202 if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
203 ctx->hi++;
204 ctx->hi += size >> 29;
205
206 unsigned long used = saved_lo & 0x3f;
207
208 if (used)
209 {
210 unsigned long available = 64 - used;
211
212 if (size < available)
213 {
214 memcpy(&ctx->buffer[used], data, size);
215 return;
216 }
217
218 memcpy(&ctx->buffer[used], data, available);
219 data = (const unsigned char*)data + available;
220 size -= available;
221 body(ctx, ctx->buffer, 64);
222 }
223
224 if (size >= 64)
225 {
226 data = body(ctx, data, size & ~(unsigned long)0x3f);
227 size &= 0x3f;
228 }
229
230 memcpy(ctx->buffer, data, size);
231}
232
233static inline void mdOUT(unsigned char* dst, winpr_MD4_u32plus src)
234{
235 (dst)[0] = (unsigned char)(src);
236 (dst)[1] = (unsigned char)((src) >> 8);
237 (dst)[2] = (unsigned char)((src) >> 16);
238 (dst)[3] = (unsigned char)((src) >> 24);
239}
240
241void winpr_MD4_Final(unsigned char* result, WINPR_MD4_CTX* ctx)
242{
243 unsigned long used = ctx->lo & 0x3f;
244
245 ctx->buffer[used++] = 0x80;
246
247 unsigned long available = 64 - used;
248
249 if (available < 8)
250 {
251 memset(&ctx->buffer[used], 0, available);
252 body(ctx, ctx->buffer, 64);
253 used = 0;
254 available = 64;
255 }
256
257 memset(&ctx->buffer[used], 0, available - 8);
258
259 ctx->lo <<= 3;
260 mdOUT(&ctx->buffer[56], ctx->lo);
261 mdOUT(&ctx->buffer[60], ctx->hi);
262
263 body(ctx, ctx->buffer, 64);
264
265 mdOUT(&result[0], ctx->a);
266 mdOUT(&result[4], ctx->b);
267 mdOUT(&result[8], ctx->c);
268 mdOUT(&result[12], ctx->d);
269
270 memset(ctx, 0, sizeof(*ctx));
271}